三维(3D)医学图像的产生可能具有巨大的应用潜力,因为它考虑了3D解剖结构。但是,有两个问题可以防止有效培训3D医疗生成模型:(1)3D医学图像的获取和注释非常昂贵,导致培训图像不足,(2)大量参数是参与3D卷积。为了解决这两个问题,我们提出了一种名为3D Split&Shuffle-Gan的新型GAN模型。为了解决3D数据稀缺问题,我们首先使用丰富的图像切片预先培训二维(2D)GAN模型,并夸大2D卷积权重以改善3D GAN的初始化。为GAN模型的生成器和鉴别器提出了新型的3D网络体系结构,以显着减少参数的数量,同时保持图像生成的质量。研究了许多体重通胀策略和参数有效的3D架构。对心脏(Stanford Aimi冠状动脉钙)和大脑(阿尔茨海默氏病神经成像计划)的实验表明,所提出的方法会导致改善的3D图像产生质量,参数较少。
translated by 谷歌翻译
可说明的人工智能(XAI)被确定为使用机器学习(ML)模型进行预测时确定功能的重要性的可行方法。在这项研究中,我们创建了将个人健康信息(例如,他们的药物历史和合并症)作为输入的模型,并预测个体将具有急性冠状动脉综合征(ACS)不利结果的可能性。使用Xai,我们量化了特定药物对这些ACS预测的贡献,从而产生了基于XAI的药物检测技术,使用ACS作为检测的不利结果的示例。鉴定了1993年至2009年在1993年至2009年期间提供的65岁以上的人(解剖治疗化学(ATC)级别M)或心血管系统(ATC类C)药物,以及其药物历史,组合和其他关键特征来自联系的西澳大利亚数据集。培训多种ML模型以预测这些个体如果这些个体具有ACS相关的不利结果(即,用于ACS的放电诊断的死亡或住院),并且使用各种ML和XAI技术来计算哪种特征 - 特别是哪种药物 - 导致这些预测。发现ROFecoxib和Celecoxib的药物分配特征对ACS相关的不利结果预测(平均)的贡献大于零效果,并且发现ACS相关的不利结果可以预测72%的准确度。此外,发现Xai库石灰和Shap成功识别重要和不重要的功能,具有略微优于石灰的形状。 ML培训的ML模型与XAI算法串联的连接行政健康数据集可以成功地量化特征重要性,并且随着进一步的开发,可能被用作药物检测技术。
translated by 谷歌翻译
Implicit Neural Representations (INR) have recently shown to be powerful tool for high-quality video compression. However, existing works are limiting as they do not explicitly exploit the temporal redundancy in videos, leading to a long encoding time. Additionally, these methods have fixed architectures which do not scale to longer videos or higher resolutions. To address these issues, we propose NIRVANA, which treats videos as groups of frames and fits separate networks to each group performing patch-wise prediction. This design shares computation within each group, in the spatial and temporal dimensions, resulting in reduced encoding time of the video. The video representation is modeled autoregressively, with networks fit on a current group initialized using weights from the previous group's model. To further enhance efficiency, we perform quantization of the network parameters during training, requiring no post-hoc pruning or quantization. When compared with previous works on the benchmark UVG dataset, NIRVANA improves encoding quality from 37.36 to 37.70 (in terms of PSNR) and the encoding speed by 12X, while maintaining the same compression rate. In contrast to prior video INR works which struggle with larger resolution and longer videos, we show that our algorithm is highly flexible and scales naturally due to its patch-wise and autoregressive designs. Moreover, our method achieves variable bitrate compression by adapting to videos with varying inter-frame motion. NIRVANA achieves 6X decoding speed and scales well with more GPUs, making it practical for various deployment scenarios.
translated by 谷歌翻译
Node classification for graph-structured data aims to classify nodes whose labels are unknown. While studies on static graphs are prevalent, few studies have focused on dynamic graph node classification. Node classification on dynamic graphs is challenging for two reasons. First, the model needs to capture both structural and temporal information, particularly on dynamic graphs with a long history and require large receptive fields. Second, model scalability becomes a significant concern as the size of the dynamic graph increases. To address these problems, we propose the Time Augmented Dynamic Graph Neural Network (TADGNN) framework. TADGNN consists of two modules: 1) a time augmentation module that captures the temporal evolution of nodes across time structurally, creating a time-augmented spatio-temporal graph, and 2) an information propagation module that learns the dynamic representations for each node across time using the constructed time-augmented graph. We perform node classification experiments on four dynamic graph benchmarks. Experimental results demonstrate that TADGNN framework outperforms several static and dynamic state-of-the-art (SOTA) GNN models while demonstrating superior scalability. We also conduct theoretical and empirical analyses to validate the efficiency of the proposed method. Our code is available at https://sites.google.com/view/tadgnn.
translated by 谷歌翻译
In this technical note, we introduce an improved variant of nearest neighbors for counterfactual inference in panel data settings where multiple units are assigned multiple treatments over multiple time points, each sampled with constant probabilities. We call this estimator a doubly robust nearest neighbor estimator and provide a high probability non-asymptotic error bound for the mean parameter corresponding to each unit at each time. Our guarantee shows that the doubly robust estimator provides a (near-)quadratic improvement in the error compared to nearest neighbor estimators analyzed in prior work for these settings.
translated by 谷歌翻译
考虑到安全至关重要自动化系统中情境意识的功能,对驾驶场景的风险及其解释性的感知对于自主和合作驾驶特别重要。为了实现这一目标,本文提出了在驾驶场景中的共同风险定位的新研究方向及其作为自然语言描述的风险解释。由于缺乏标准基准,我们收集了一个大规模数据集,戏剧性(带有字幕模块的驾驶风险评估机制),该数据集由17,785个在日本东京收集的互动驾驶场景组成。我们的戏剧数据集适用于带有相关重要对象的驾驶风险的视频和对象级别的问题,以实现视觉字幕的目标,作为一种自由形式的语言描述,利用封闭式和开放式响应用于多层次问题,可以用来使用这些响应,可用于在驾驶场景中评估一系列视觉字幕功能。我们将这些数据提供给社区以进行进一步研究。使用戏剧,我们探索了在互动驾驶场景中的联合风险定位和字幕的多个方面。特别是,我们基准了各种多任务预测架构,并提供了关节风险定位和风险字幕的详细分析。数据集可在https://usa.honda-ri.com/drama上获得
translated by 谷歌翻译
自2016年成立以来,Alexa奖计划使数百名大学生能够通过Socialbot Grand Challenge探索和竞争以发展对话代理商。挑战的目的是建立能够与人类在流行主题上连贯而诱人的代理人20分钟,同时达到至少4.0/5.0的平均评分。但是,由于对话代理商试图帮助用户完成日益复杂的任务,因此需要新的对话AI技术和评估平台。成立于2021年的Alexa奖Taskbot Challenge建立在Socialbot Challenge的成功基础上,通过引入交互式协助人类进行现实世界烹饪和做自己动手做的任务的要求,同时同时使用语音和视觉方式。这项挑战要求TaskBots识别和理解用户的需求,识别和集成任务和域知识,并开发新的方式,不分散用户的注意力,而不必分散他们的任务,以及其他挑战。本文概述了Taskbot挑战赛,描述了使用Cobot Toolkit提供给团队提供的基础架构支持,并总结了参与团队以克服研究挑战所采取的方法。最后,它分析了比赛第一年的竞争任务机器人的性能。
translated by 谷歌翻译
面向目标的生成脚本学习旨在根据目标生成后续步骤,这是帮助机器人进行日常生活的刻板印象活动的重要任务。我们表明,如果历史状态不仅被给人的语言指示捕获,而且还可以增强随附图像提供的其他信息,可以提高此任务的性能。因此,我们提出了一项新任务,多媒体生成脚本学习,以通过跟踪文本和视觉方式中的历史状态,并介绍包含2,338个任务和31,496个步骤的第一个基准,从而生成后续步骤。我们旨在生成视觉状态的脚本,这些脚本是可跟踪的,对看不见的任务的诱导性,并且在各自的步骤中多样化。我们建议通过多媒体选择性编码器编码视觉状态更改,并使用检索仪的解码器从先前观察到的任务中转移知识,并通过优化面向多样性的对比度学习目标来在每个步骤中介绍不同的信息。我们定义指标以评估发电质量和电感质量。实验结果表明,我们的方法明显优于强质基线。
translated by 谷歌翻译
我们提出了一种方法,用于在主动电分布网络中考虑使用脆弱节点识别的最佳DERS分配,并将这些节点命名为关键节点。这些关键节点的功率变化将显着影响其他链接节点的运行,因此这些节点适合使用,并且认为最适合DERS放置。我们在标准的IEEE-123测试馈线系统中证明了我们的方法评估。最初,我们使用图理论将分布系统划分为最佳微电网网络。使用图神经网络体系结构对分区进行了验证,以适当形成微电网。此外,使用有效的可测量分析(例如Granger因果关系),我们确定了分区的微电网中的关键节点和在这些节点上的DERS放置,从而提高了网络可靠性和弹性。此外,为了验证系统性能和能量弹性,我们计算了微电网网络的渗透阈值,该网络指示了在这些关键节点上掺入DER后系统弹性。这项提出的有关首先的方法可确保通过分布网络中数据驱动的分析方法来确定有效的微电网分配,关键节点的识别,最佳DERS分配和系统弹性评估。
translated by 谷歌翻译
最近,电分配系统被分布式能源(DER)广泛渗透,以满足能量需求,以一般的看法,即增强系统的弹性。但是,由于其间歇性可用性,天气状况的动态,非线性,复杂性的引入等各种因素,这可能是不利的。这需要对我们的方法在这里提出的对系统弹性的详细理解。我们介绍了一种使用复杂网络理论的方法,以确定与太阳能PV生成在各种不良配置下合并时分配系统的弹性。获得了不同条件的复杂相关网络,并计算了各种网络参数以识别这些网络的弹性。所提出的方法可以确定系统中太阳能电池板的托管能力,同时在不同的不需要条件下保持弹性有助于获得系统中太阳能电池板的最佳分配拓扑。所提出的方法还标识了对变化高度敏感的关键节点,并可能将系统推向非弹性。该框架在IEEE-123测试馈线系统上使用了使用GridLab-D生成的时间序列数据,并使用复杂的网络和机器学习模型进行了多种分析。
translated by 谷歌翻译